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Abstract. In the covariant quark-diquark model the effective Bethe-Salpeter (BS) equations for the nucleon
and the ∆ are solved including scalar and axial vector diquark correlations. Their quark substructure is
effectively taken into account in both, the interaction kernel of the BS equations and the currents employed
to calculate nucleon observables. Electromagnetic current conservation is maintained. The electric form
factors of proton and neutron match the data. Their magnetic moments improve considerably by including
axial vector diquarks and photon induced scalar-axial vector transitions. The isoscalar magnetic moment
can be reproduced, the isovector contribution is about 15% too small. The ratio µ GE/GM and the axial
and strong couplings gA, gπNN, provide an upper bound on the relative importance of axial vector diquarks
confirming that scalar diquarks nevertheless describe the dominant 2-quark correlations inside nucleons.

PACS. 11.10.St Bound states; Bethe-Salpeter equations – 12.40.Yx Hadron mass models and calculations
– 13.40.Gp Electromagnetic form factors – 14.20.Dh Protons and neutrons

1 Introduction

High-precision data on nucleon properties in the medium-
energy range are available by now or will be in near fu-
ture. This is especially the case for their electromagnetic
form factors. From a theoretical point of view the behavior
of the form factors indicates the necessity of a relativis-
tic description of the nucleon. Non-relativistic constituent
models generally fail beyond a momentum transfer of a
few hundred MeV.

From relativistic quantum mechanics of three con-
stituent quarks models employing effective Hamiltonian
descriptions were deduced. However, the necessity for the
effective Hamiltonian to comply with the Poincaré alge-
bra and, at the same time, with the covariance prop-
erties of the wave functions leads to fairly complicated
constraints to ensure the covariance of current operators
[1]. While some phenomenological studies relax these con-
straints and allow for covariance violations of one-body
currents [2], others put emphasis on the consistent trans-
formation of those components of one-body currents that
are relevant in light-front Hamiltonian dynamics [3–5].
The inclusion of two-body currents was considered within
a semi-relativistic chiral quark model in the study of ref.
[6]. Generally, in order to describe the phenomenological
dipole shape of the electric form factor of the proton, ad-
ditional form factors for the constituent quarks need to be
introduced in a phenomenological way in these quantum-
mechanical models [5,6].
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Models based on the quantum field-theoretic bound-
state equations for baryons on the other hand have proved
capable of describing the electric form factors of both nu-
cleons quite successfully without such additional assump-
tions [7–9]. Parameterizations of covariant Faddeev am-
plitudes of the nucleons for calculating various form fac-
tors were explored in refs. [8] employing impulse approxi-
mate currents, the field-theoretic analog of using one-body
currents. While the covariance of the corresponding nu-
cleon amplitudes is of course manifest in the quantum
field-theoretic models, current conservation requires one
to go beyond the impulse approximation, however, also in
these studies [9–11]. Furthermore, the invariance under (4-
dimensional) translations ramifies into certain properties
of the baryonic bound-state amplitudes which are gener-
ally not reflected by the parameterizations but result only
for solutions to their quantum field-theoretic bound-state
equations such as those obtained in ref. [9].

The axial structure of the nucleon is known far less pre-
cisely than the electromagnetic one. The theoretical stud-
ies have mainly been focused on the soft point limit. Even
though precise experimental data on the pion-nucleon and
the axial form factor for finite Q2 are difficult to obtain,
and thus practically unavailable, it would be very helpful
to compare the various theoretical results (see, e.g., refs.
[7] and [8]) to such data.

In this paper, we investigate the structure of the nu-
cleon within the covariant quark-diquark model. In pre-
vious applications of this model, including calculations
of quark distribution functions [12] and of various nu-
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cleon form factors in the impulse approximation [7], point-
like scalar diquark correlations were employed. The octet
and decuplet baryon spectrum is described in ref. [13]
maintaining pointlike scalar and axial vector diquarks. A
correct description of the nucleons’ electric form factors
and radii was obtained in ref. [9] by introducing diquark
substructure. We extend this latter calculation to non-
pointlike axial vector diquarks which allows us to include
the ∆-resonance in the calculations. The model is fully
relativistic, reflects gauge invariance in the presence of
an electromagnetic field, and it allows a direct compari-
son with the semi-relativistic treatment obtained from the
Salpeter approximation (to the relativistic Bethe-Salpeter
equation employed herein). This comparison was done in
ref. [14] showing that both, the static observables (mag-
netic moments, pion-nucleon coupling constant and axial
coupling constant) and the behavior of the neutron electric
form factor (or its charge radius, which is particularly sen-
sitive to the specific assumptions of any nucleon model),
in such a treatment deviate considerably from the fully
relativistic one. These results indicate that further stud-
ies of the quantum field-theoretic bound-state equations
for nucleons are worth pursuing.

In the next section, we briefly review the basic no-
tions of the quark-diquark model. In section 3 the model
expressions for the electromagnetic, the pion-nucleon and
the weak-axial form factors are derived. Starting from the
quark vertices and their respective currents we construct
effective diquark vertices and fix their strengths by resolv-
ing the quark-loop structure of the diquarks. We employ
two parameter sets in our calculations. One set is chosen
to fit nucleon properties alone whereas the other one in-
cludes the mass of the delta-resonance. While the electric
form factors are essentially identical for both sets, differ-
ences occur in the magnetic form factors. We present our
results and discuss their implications in section 4. The
electromagnetic form factors are thereby compared to ex-
perimental data. In conclusion we comment on future per-
spectives within this framework.

2 The quark-diquark model

Nucleon and delta are modelled as bound states of three
constituent quarks. In order to make the relativistic three-
body problem tractable, we neglect any 3-particle irre-
ducible interactions between the quarks and assume sep-
arable correlations in the two-quark channel. The latter
assumption introduces non-pointlike diquark correlations.
The first assumption allows to derive a relativistic Fad-
deev equation for the 6-point quark function and the as-
sumed separability reduces it to an effective quark-diquark
Bethe-Salpeter (BS) equation. In the following, we work
in Euclidean space.

In this article we restrict ourselves to scalar and axial
vector diquarks which are introduced, as stated above, via
the separability assumption for the connected and trun-

cated 4-point quark function:

Gsep
αγ,βδ(p, q, P ) := χγα(p)D(P ) χ̄βδ(q)

+χµ
γα(p)D

µν(P )χ̄ν
βδ(q) . (2.1)

P is the total momentum of the incoming and the outgoing
quark pair, p and q are the relative momenta between the
quarks in the two channels. The propagators of scalar and
axial vector diquark in eq. (2.1) are those of free spin-0
and spin-1 particles,

D(P ) = − 1
P 2 +m2sc

, (2.2)

Dµν(P ) = − 1
P 2 +m2ax

(
δµν +

PµP ν

m2ax

)
. (2.3)

Correspondingly, χαβ(p) and χµ
αβ(p) are the respective

quark-diquark vertex functions. Here, we maintain only
their dominant Dirac structures which are multiplied by
an invariant function P (p2) of the relative momentum p
between the quarks to parameterize the quark substruc-
ture of the diquarks. The Pauli principle then fixes this
relative momentum to be antisymmetric in the quark mo-
menta pα and pβ [9], i.e. p = 1

2 (pα − pβ). Besides the
structure of the vertex functions in Dirac space, they be-
long to the anti-triplet representation in color space, i.e.
they are proportional to εABD with color indices A,B for
the quarks and D labelling the color of the diquark. Fur-
thermore, the scalar diquark is an antisymmetric flavor
singlet represented by (τ2)ab, and the axial vector diquark
is a symmetric flavor triplet which can be represented by
(τ2τk)ab. Here, a and b label the quark flavors and k the
flavor of the axial vector diquark. Thus, with all these
indices made explicit, the vertex functions read1

χαβ(p) = gs(γ5C)αβ P (p)
(τ2)ab√
2

εABD√
2

, (2.4)

χµ
αβ(p) = ga(γµC)αβ P (p)

(τ2τk)ab√
2

εABD√
2

. (2.5)

Here, C denotes the charge conjugation matrix; ga and
gs are effective coupling constants of two quarks to scalar
and axial vector diquarks, respectively.

For the scalar function P (p), we employ a simple dipole
form with an effective width λ which has proven very suc-
cessful in describing the phenomenological dipole form of
the electric form factor of the proton in ref. [9],

P (p) =
(

λ2

λ2 + p2

)2
. (2.6)

This models the non-pointlike nature of the diquarks. It
furthermore provides for the natural ultraviolet regular-
ity of the interaction kernel in the nucleon and delta BS
equations to be derived below.

1 Symbolically denoting the totality of quark indices by the
same Greek letters that are used as their Dirac indices should
not create confusion. The particular flavor structures are tied
to the Dirac decomposition of the diquarks, color-3̄ is fixed.



M. Oettel et al.: Nucleon properties in the covariant quark-diquark model 555

We can compute the coupling constants gs and ga by
putting the diquarks on-shell and evaluating the canonical
normalization condition by using that the vertex functions
χαβ(p) and χµ

αβ(p) can be viewed as diquark amplitudes
with truncated quark legs:

1
4

∫
d4p
(2π)4

χ̄αβ Pµ ∂

∂Pµ
G
(0−)
αγ,βδ χγδ

!= 2m2sc, (2.7)

1
4

∫
d4p
(2π)4

(
χ̄ν

αβ

)T
Pµ ∂

∂Pµ
G
(0+)
αγ,βδ

(
χν

γδ

)T != 6m2ax. (2.8)

Here, G(0±)αγ,βδ is the free propagator for two quarks, sym-
metrized (+) for the axial vector diquark and antisym-
metrized (−) for the scalar diquark [9]. Furthermore,
(χν)T = χν − P̂ ν(P̂µχµ) is the transverse part of the ver-
tex function χν (note that the pole contribution of the
axial vector diquark is transverse to its total momentum,
and the sum over the three polarization states provides
an extra factor of 3 on the r.h.s. of eq. (2.8). as compared
to eq. (2.7)). With normalizations as chosen in eqs. (2.4,
2.5) the traces over the color and flavor parts yield no
additional factors.

2.1 Nucleon amplitudes

The nucleon BS amplitudes (or wave functions) can be
described by an effective multi-spinor characterizing the
scalar and axial vector correlations,

Ψ(p, P )u(P, s) ≡
(
Ψ5(p, P )
Ψµ(p, P )

)
u(P, s). (2.9)

u(P, s) is a positive-energy Dirac spinor (of spin s), p
and P are the relative and total momenta of the quark-
diquark pair, respectively. The vertex functions are de-
fined by truncation of the legs,

(
Φ5

Φµ

)
= S−1

(
D−1 0
0 (Dµν)−1

)(
Ψ5

Ψν

)
. (2.10)

The diquark propagators D and Dµν are defined in eqs.
(2.2, 2.3) and S−1 denotes the inverse quark propagator
in eq. (2.10). In the present study we employ that of a free
constituent quark with mass mq,

S−1(p) = −ip/ −mq . (2.11)

The coupled system of BS equations for the nucleon am-
plitudes or their vertex functions can be written in the
following compact form:

∫
d4p′

(2π)4
G−1(p, p′, P )

(
Ψ5

Ψµ′

)
(p′, P ) = 0 , (2.12)

in which G−1(p, p′, P ) is the inverse of the full quark-
diquark 4-point function. It is the sum of the disconnected
part and the interaction kernel.

Here, the interaction kernel results from the reduc-
tion of the Faddeev equation for separable 2-quark cor-
relations. It describes the exchange of the quark with one
of those in the diquark which is necessary to implement
Pauli’s principle in the baryon. Thus,

G−1(p, p′, P ) =

(2π)4 δ4(p− p′) S−1(pq)
(

D−1(pd)0
0(Dµ′µ)−1(pd)

)

−1
2

( −χ(p2
2)S

T
(q)χ̄(p2

1)
√
3χµ′

(p2
2)S

T
(q)χ̄(p2

1)√
3 χ(p2

2)S
T
(q)χ̄µ

(p2
1) χµ′

(p2
2)S

T
(q)χ̄µ

(p2
1)

)
.(2.13)

Herein, the flavor and color factors have been taken into
account explicitly, and χ, χµ stand for the Dirac struc-
tures of the diquark-quark vertices (multiplied by the in-
variant function P (p21,[2]), see eq. (2.6)). The freedom to
partition the total momentum between quark and diquark
introduces the parameter η ∈ [0, 1] with pq = ηP + p
and pd = (1 − η)P − p. The momentum of the ex-
changed quark is then given by q = −p− p′ + (1− 2η)P .
The relative momenta of the quarks in the diquark ver-
tices χ and χ̄ are p2 = p + p′/2 − (1 − 3η)P/2 and
p1 = p/2+p′−(1−3η)P/2, respectively. Invariance under
(4-dimensional) translations implies that for every solu-
tion Φ(p, P ; η1) of the BS equation there exists a family of
solutions of the form Φ(p+ (η2 − η1)P, P ; η2).

Using the positive energy projector with nucleon
bound-state mass Mn,

Λ+ =
1
2

(
1 +

P/

iMn

)
, (2.14)

the vertex functions can be decomposed into their most
general Dirac structures,

Φ5(p, P ) = (S1 +
i

Mn
p/S2)Λ+, (2.15)

Φµ(p, P ) =
Pµ

iMn
(A1 +

i

Mn
p/A2)γ5Λ+

+γµ(B1 +
i

Mn
p/B2)γ5Λ+

+
pµ

iMn
(C1 +

i

Mn
p/C2)γ5Λ+ . (2.16)

In the rest frame of the nucleon, P = (0, iMn), the un-
known scalar functions Si and Ai are functions of p2 =
pµpµ and of the angle variable z = P̂ · p̂, the cosine of the
(4-dimensional) azimuthal angle of pµ. Certain linear com-
binations of these eight covariant components then lead
to a full partial-wave decomposition, see ref. [13] for more
details and for examples of decomposed amplitudes as-
suming pointlike diquarks. These nucleon amplitudes have
in general a considerably broader extension in momentum
space than those obtained herein with including the quark
substructure of diquarks, however.
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The BS solutions are normalized by the canonical con-
dition

MnΛ
+ != −

∫
d4 p
(2π)4

∫
d4 p′

(2π)4
(2.17)

×Ψ̄(p′, Pn)
[
Pµ ∂

∂Pµ
G−1(p′, p, P )

]
P=Pn

Ψ(p, Pn) .

2.2 Delta amplitudes

The effective multi-spinor for the delta baryon rep-
resenting the BS wave function can be characterized
as Ψµν

∆ (p, P )uν(P ), where uν(P ) is a Rarita-Schwinger
spinor. The momenta are defined analogously to the nu-
cleon case. As the delta state is flavor symmetric, only
the axial vector diquark contributes and, accordingly, the
corresponding BS equation reads

∫
d4p′

(2π)4
G−1

∆ (p, p′, P )Ψµ′ν
∆ (p′, P ) = 0 , (2.18)

where the inverse quark-diquark propagator G−1
∆ in the

∆-channel is given by

G−1
∆ (p, p′, P ) = (2π)4δ4(p− p′) S−1(pq) (Dµµ′

)−1(pd)

+χµ′
(p22) S

T (q) χ̄µ(p21). (2.19)

The general decomposition of the corresponding vertex
function Φµν

∆ , obtained as in eq. (2.10) by truncating the
quark and diquark legs of the BS wave function Ψµν

∆ , reads

Φµν
∆ (p, P ) = (D1 +

i

M∆
p/D2) Λµν

+
Pµ

iM∆
(E1 +

i

M∆
p/E2)

pλT

iM∆
Λλν (2.20)

+γµ(E3 +
i

M∆
p/E4)

pλT

iM∆
Λλν

+
pµ

iM∆
(E5 +

i

M∆
p/E6)

pλT

iM∆
Λλν .

Here, Λµν is the Rarita-Schwinger projector,

Λµν= Λ+
(
δµν− 1

3
γµγν+

2
3
PµP ν

M2
∆

− i

3
Pµγν−P νγµ

M∆

)
(2.21)

which obeys the constraints

PµΛµν = γµΛµν = 0. (2.22)

Therefore, the only non-zero components arise from the
contraction with the transverse relative momentum pµT =
pµ − P̂µ(p · P̂ ). The invariant functions Di and Ei in
eq. (2.20) again depend on p2 and p̂ · P̂ . The partial-wave
decomposition in the rest frame is given in ref. [13], and
again, the ∆-amplitudes from pointlike diquarks of [13]
are wider in p2 than those obtained herein.

Table 1. The two parameter sets employed in the calculations
herein together with the values of couplings and bound-state
masses obtained with these sets.

Set I Set II

mq [GeV] 0.360 0.425
msc [GeV] 0.625 0.598
max [GeV] 0.684 0.831

λ [GeV] 0.95 0.53
gs 9.29 22.10
ga 6.97 6.37

M∆ [GeV] 1.007 1.232
Mn [GeV] 0.939 0.939

2.3 Solution for BS amplitudes of nucleons and ∆

The nucleon and ∆ BS equations are solved in the baryon
rest frame by expanding the unknown scalar functions in
terms of Chebyshev polynomials [13,9]. Iterating the inte-
gral equations yields a certain eigenvalue which by read-
justing the parameters of the model is tuned to one. Alto-
gether there are four parameters, the quark mass mq, the
diquark masses msc and max and the diquark width λ.

In the calculations presented herein we shall illustrate
the consequences of our present model assumptions with
two different parameter sets as examples which empha-
size slightly different aspects. For Set I, we employ a con-
stituent quark mass of mq = 0.36 GeV which is close
to the values commonly used by non- or semi-relativistic
constituent quark models. Due to the free-particle poles
in the bare quark and diquark propagators used presently
in the model, the axial vector diquark mass is below 0.72
GeV and the delta mass below 1.08 GeV. On the other
hand, nucleon and delta masses are fitted by Set II, i.e.
the parameter space is constrained by these two masses.
In particular, this implies mq > 0.41 GeV. Both parame-
ter sets together with the corresponding values resulting
for the effective diquark couplings and baryon masses are
given in table 1.

Two differences between the two sets are important in
the following: The strength of the axial vector correlations
within the nucleon is rather weak for Set II, since the
scalar diquark contributes 92% to the norm integral of
eq. (2.17) while the axial vector correlations and scalar-
axial vector transition terms together give rise only to
the remaining 8% for this set. For Set I, the fraction of
the scalar correlations is reduced to 66%, the axial vector
correlations are therefore expected to influence nucleon
properties more strongly for Set I than for Set II. Secondly,
the different constituent quark masses affect the magnetic
moments. We recall that in non-relativistic quark models
the magnetic moment is roughly proportional to Mn/mq
and that most of these models thus employ constituent
masses around 0.33 GeV.



M. Oettel et al.: Nucleon properties in the covariant quark-diquark model 557

fP

qk

iP

dk

qp   

Ψf Ψi

Q

[5,α] [5,β]

Ψi

p
d dk

qk

fP
iP

Q

Ψ f

[5,α] [5,β]

p
d dk

qk

fP
iP

Ψi

Q

scalar
axial-
vector

Ψ f

5 β

Fig. 1. Impulse approximate contributions to the electromag-
netic current. For the scalar-axial vector transition, a diagram
analogous to the third one (with initial and final nucleon states
interchanged) has to be computed.

3 Observables

3.1 Electromagnetic form factors

The Sachs form factors GE and GM can be extracted from
the solutions of the BS equations using the relations

GE =
Mn

2P 2
Tr〈Jµ〉Pµ, GM =

iM2
n

Q2
Tr〈Jµ〉γµ

T , (3.1)

where P = (Pi + Pf )/2, γ
µ
T = γµ − P̂µP̂/ , and the spin-

summed matrix element 〈Jµ〉 is given by
〈Jµ〉 ≡ 〈Pf , sf |Jµ|Pi, si〉

∑
sf ,si

u(Pf , sf )ū(Pi, si)

=
∫
d4pf

(2π)4

∫
d4pi

(2π)4
Ψ̄(Pf , pf ) Jµ Ψ(Pi, pi). (3.2)

The current Jµ herein is obtained as in ref. [9]. It repre-
sents a sum of all possible couplings of the photon to the
inverse quark-diquark propagator G−1 given in eq. (2.13).
This construction which ensures current conservation can
be systematically derived from the general “gauging tech-
nique” employed in refs. [10,11].

The two contributions to the current that arise from
coupling the photon to the disconnected part of G−1, the
first term in eq. (2.13), yield the impulse approximate cou-
plings to quark and diquark. They are graphically repre-
sented by the middle and the upper diagram in fig. 1. The
corresponding kernels, to be multiplied by the charge of
the respective quark or diquark upon insertion into the
r.h.s. of eq. (3.2), read,

Jµ
q = (2π)

4 δ4(pf − pi − ηQ)Γµ
q D̃−1(kd), (3.3)

Jµ
sc[ax] = (2π)

4 δ4(pf −pi+(1−η)Q)Γµ,[αβ]
sc[ax] S−1(kq).(3.4)

Here, the inverse diquark propagator D̃−1 comprises
both scalar and axial vector components. The vertices in
eqs. (3.3) and (3.4) are the ones for a free quark, a spin-0
and a spin-1 particle, respectively,

Γµ
q =−iγµ, Γµ

sc = −(pd + kd)µ, and (3.5)

Γµ,αβ
ax =−(pd + kd)µ δαβ + pα

d δµβ + kβ
d δµα

+κ (Qβ δµα −Qα δµβ). (3.6)

The Dirac indices α, β in (3.6) refer to the vector indices of
the final and initial state wave function, respectively. The
axial vector diquark can have an anomalous magnetic mo-
ment κ. We obtain its value from a calculation for vanish-
ing momentum transfer (Q2 = 0) in which the quark sub-
structure of the diquarks is resolved, i.e. in which a (soft)
photon couples to the quarks within the diquarks. The
corresponding contributions are represented by the upper
and the right diagram in fig. 2. The calculation of κ is pro-
vided in Appendix A.1. The values obtained from the two
parameter sets are both very close to κ = 1 (see table 6).
This might seem understandable from nonrelativistic in-
tuition: the magnetic moments of two quarks with charges
q1 and q2 add up to (q1+q2)/mq, the magnetic moment of
the axial vector diquark is (1+κ)(q1+ q2)/max and if the
axial vector diquark is weakly bound, max � 2mq, then
κ � 1. In the following we use κ = 1.

The vertices in eqs. (3.5) and (3.6) satisfy their respec-
tive Ward-Takahashi identities, i.e. those for free quark
and diquark propagators (cf. eqs. (2.2,2.3) and (2.11)),
and thus describe the minimal coupling of the photon to
quark and diquark.

We furthermore take into account impulse approxi-
mate contributions describing the photon-induced tran-
sitions between scalar and axial vector diquarks as repre-
sented by the lower diagram in fig. 1. These yield purely
transverse currents and do thus not affect current con-
servation. The tensor structure of these contributions re-
sembles that of the triangle anomaly. In particular, the
structure of the vertex describing the transition from ax-
ial vector (with index β) to scalar diquark is given by

Γµβ
sa = −i

κsa
2Mn

εµβρλ(pd + kd)ρQλ, (3.7)

and that for the reverse transition from scalar to axial
vector (index α) by

Γµα
as = i

κsa
2Mn

εµαρλ(pd + kd)ρQλ. (3.8)

The tensor structure of these anomalous diagrams (for
Q → 0) is derived by resolving the diquarks in Appendix
A.1 in a way as represented by the lower diagram in fig. 2.
The explicit factor 1/Mn was introduced to isolate a di-
mensionless constant κsa. Its value is obtained roughly as
κsa � 2.1 (with the next digit depending on the parameter
set, cf. table 6).

Upon performing the flavor algebra for the current ma-
trix elements of the impulse approximation, one obtains
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p
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k

p
3

p
1

p
2

β

Q

χ χ

Γ µ,β
sa

∼

p
d d

k

p
3

p
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p
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Q
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Γ
µ,αβ
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∼

p
d d

k

p
3

p
1

p
2

Γ
µ
sc

Q

χ χ

∼

Fig. 2. Resolved vertices: photon-scalar diquark, photon-axial
vector diquark and anomalous scalar-axial vector diquark tran-
sition.

the following explicit forms for proton and neutron:

〈Jµ〉impp =
2
3
〈Jµ
q 〉sc-sc +

1
3
〈Jµ
sc〉sc-sc + 〈Jµ

ax〉ax-ax

+
√
3
3

(〈Jµ
sa〉sc-ax + 〈Jµ

as〉ax-sc
)
, (3.9)

〈Jµ〉impn = −1
3

(〈Jµ
q 〉sc-sc − 〈Jµ

q 〉ax-ax − 〈Jµ
sc〉sc-sc

+ 〈Jµ
ax〉ax-ax

) −
√
3
3

(〈Jµ
sa〉sc-ax + 〈Jµ

as〉ax-sc
)
. (3.10)

The superscript ‘sc-sc’ indicates that the current operator
is to be sandwiched between scalar nucleon amplitudes for
both the final and the initial state in eq. (3.2). Likewise
‘sc-ax’ denotes current operators that are sandwiched be-
tween scalar amplitudes in the final and axial vector am-
plitudes in the initial state, etc.. We note that the axial
vector amplitudes contribute to the proton current only
in combination with diquark current couplings.

Current conservation requires that the photon also be
coupled to the interaction kernel in the BS equation, i.e. to
the second term in the inverse quark-diquark propagator
G−1 of eq. (2.13). The corresponding contributions were
derived in [9]. They are represented by the diagrams in
fig. 3. In particular, in [9] it was shown that, in addition to
the photon coupling with the exchange-quark (with vertex
Γµ
q ), irreducible (seagull) interactions of the photon with
the diquark substructure have to be taken into account.
The structure and functional form of these diquark-quark-
photon vertices is constrained by Ward identities. The ex-
plicit construction of ref. [9] yields seagull couplings of
the following form (with Mµ denoting that for the scalar
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Fig. 3. Exchange quark and seagull diagrams.

diquark and Mµ,β that for the axial vector with Lorentz
index β):

Mµ[,β] = qq
(4p1 −Q)µ

4p1 ·Q−Q2

[
χ[β](p1 −Q/2)− χ[β](p1)

]

+qex
(4p1 +Q)µ

4p1 ·Q+Q2

[
χ[β](p1 +Q/2)− χ[β](p1)

]
. (3.11)

Here, qq denotes the charge of the quark with momentum
pq, qex the charge of the exchanged quark with momentum
q′, and p1 is the relative momentum of the two, p1 =
(pq − q′)/2 (see fig. 3). The conjugate vertices M̄µ[,α] are
obtained from the conjugation of the diquark amplitudes
χ[β] in eq. (3.11) together with the replacement p1 → p2 =
(q − kq)/2 (cf., ref. [9]).

Regarding the numerical evaluation of the diagrams
we remark that in the case of the impulse approximation
diagrams we use the covariant decomposition of the ver-
tex function Φ given in eqs. (2.15, 2.16) together with the
numerical solution for the scalar functions Si, Ai, Bi, Ci.
The continuation of these functions from the nucleon rest
frame to the Breit frame is described in detail in ref. [9].
For finite momentum transfer, care is needed in treating
the singularities of the quark and diquark propagators
that appear in the single terms of eq. (3.2). In ref. [9]
it was shown that for some kinematical situations explicit
residues have to be taken into account in the calculation
of the impulse approximation diagrams. This applies also
to the calculations presented here.

The computation of the diagrams given in fig. 3 in-
volves two four-dimensional integrations. As the singular-
ity structure of these diagrams becomes quite intricate,
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we resorted to an expansion of the wave function Ψ anal-
ogously to the expansion of Φ. The corresponding scalar
functions that have been computed in the rest frame as
well show a much weaker convergence in terms of the
Chebyshev polynomials than the scalar functions related
to the expansion of the vertex function [9]. As a result, the
numerical uncertainty (for these diagrams only) exceeded
the level of a few percent beyond momentum transfers of
2.5 GeV2. Due to this limitation (which could be avoided
by increasing simply the used computer time) the form
factor results presented in section 4 are restricted to the
region of momentum transfers below 2.5 GeV2.

These remarks concerning the numerical method apply
also to the computation of the strong form factor gπNN

and the weak form factor gA which will be discussed in
the following subsection.

3.2 The strong form factor gπNN and the weak form
factor gA

The coupling of the pion to the nucleon, described by a
pseudoscalar operator, and the pseudovector currents of
weak processes such as the neutron β-decay are connected
to each other in the soft limit by the Goldberger-Treiman
relation.

The (spin-summed) matrix element of the pseu-
doscalar density Ja

5 can be parameterized as

〈Ja
5 〉 = Λ+(Pf ) τaγ5gπNN(Q2)Λ+(Pi). (3.12)

Straightforward Dirac algebra allows to extract the form
factor as the following trace:

gπNN(Q2) = −2M
2
n

Q2
Tr〈J35 〉γ5 . (3.13)

Here, we sandwich the third component of the pseu-
doscalar density, J35 , between proton isospinors. To com-
pute the form factors we first specify a suitable quark-pion
vertex, evaluate an impulse approximate contribution cor-
responding to the upper diagram of fig. 1, and an exchange
contribution analogous to the upper diagram of fig. 3. The
structures and strengths (for Q → 0) for the couplings of
the diquarks to the pion and the axial vector current (the
remaining two impulse approximation diagrams in fig. 1)
are obtained from resolving the diquarks in a way similar
to their electromagnetic couplings in Appendix A.2.

The structure of the inverse quark propagator, given
by S−1(p) = −ip/A(p2) − B(p2), suggests that we use for
the pion-quark vertex

Γ a
5 = −γ5

B

fπ
τa, (3.14)

and discard the three additionally possible Dirac struc-
tures (fπ is the pion decay constant). The reason is that
in the chiral limit eq. (3.14) is the exact pion BS am-
plitude for equal quark and antiquark momenta, since the
Dyson-Schwinger equation for the scalar function B agrees
with the BS equation for a pion of zero momentum in this

limit. Of course, the subdominant amplitudes should in
principle be included for physical pions (with momentum
−P 2 = m2π), when solving the Dyson-Schwinger equation
for A and B and the BS equation for the pion in mu-
tually consistent truncations [15–17]. Herein we employ
A(p2) = 1 and B(p2) = mq.

The matrix elements of the pseudovector current are
parameterized by the form factor gA(Q2) and the induced
pseudoscalar form factor gP(Q2),

〈Ja,µ
5 〉=Λ+(Pf )

τa

2
[
iγµγ5gA(Q2)+Qµγ5gP(Q2)

]
Λ+(Pi).

(3.15)

For Q2 → 0 the Goldberger-Treiman relation,

gA(0) = fπgπNN(0)/Mn , (3.16)

then follows from current conservation and the observation
that only the induced pseudoscalar form factor gP(Q2) has
a pole on the pion mass-shell.

By definition, gA describes the regular part of the pseu-
dovector current and gP the induced pseudoscalar form
factor. They can be extracted from eq. (3.15) as follows:

gA(Q2) = − i

2
(
1 + Q2

4M2
n

)Tr〈J3,µ5 〉
(
γ5γ

µ − iγ5
2Mn

Q2
Qµ

)
,

(3.17)

gP(Q2) =
2Mn

Q2

(
gA(Q2)− 2Mn

Q2
Tr〈J3,µ5 〉Qµγ5

)
. (3.18)

As before, the third component (in isospace) of the pseu-
dovector current, J3,µ5 , is to be sandwiched between pro-
ton isospinors. We again use chiral symmetry constraints
to construct the pseudovector-quark vertex. In the chiral
limit, the Ward-Takahashi identity for this vertex reads,

QµΓµ,a
5 =

τa

2
(
S−1(k)γ5 + γ5S

−1(p)
)

(Q = k − p).

(3.19)

To satisfy this constraint we use the form of the vertex
proposed in ref. [18],

Γµ,a
5 = −iγµγ5

τa

2
+

Qµ

Q2
fπΓ

a
5 . (3.20)

The second term which contains the massless pion pole
does not contribute to gA as can be seen from eq. (3.17).
From these quark contributions to the pion coupling and
the pseudovector current alone, eqs. (3.20) and (3.13)
would thus yield,

lim
Q2→0

Q2

2Mn
gP(Q2) =

fπ

Mn
gπNN(0). (3.21)

Here, the Goldberger-Treiman relation followed if the
pseudovector current was conserved or, off the chiral limit,
from PCAC.
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Current conservation is a non-trivial requirement in
the relativistic bound-state description of nucleons, how-
ever. First, we ignored the pion and pseudovector cou-
plings to the diquarks in the simple argument above. For
scalar diquarks alone which themselves do not couple to ei-
ther of the two,2 pseudovector current conservation could
in principle be maintained by including the couplings to
the interaction kernel of the nucleon BS equation in much
the same way as was done for the electromagnetic current.

Unfortunately, when axial vector diquarks are in-
cluded, even this will not suffice to maintain current con-
servation. As observed recently in ref. [11], a doublet of
axial vector and vector diquarks has to be introduced, in
order to comply with chiral Ward identities in general.
The reason essentially is that vector and axial vector di-
quarks mix under a chiral transformation whereas this is
not the case for scalar and pseudoscalar diquarks. Since
vector diquarks, on the one hand, introduce six additional
components to the nucleon wave function, but are on the
other hand not expected to influence the binding strongly,
here we prefer to neglect vector diquark correlations and
to investigate the axial form factor without them.

The pion and the pseudovector current can couple to
the diquarks by an intermediate quark loop. As for the
anomalous contributions to the electromagnetic current,
we derive the Lorentz structure of the diquark vertices
and calculate their effective strengths from this quark sub-
structure of the diquarks in Appendix A.2.

As mentioned above, no such couplings arise for the
scalar diquark. The axial vector diquark and the pion cou-
ple by an anomalous vertex. Its Lorentz structure is sim-
ilar to that for the photon-induced scalar-to-axial vector
transition in eq. (3.7):

Γ ρλ,abc
5,ax =

κ5ax
2Mn

mq
fπ

ερλµν(pd+kd)µQν(1−2δa2)iεabc. (3.22)

Here, a is the flavor index of the pion or, below, of the
pseudovector current, while b and c are those of the outgo-
ing and the incoming axial vector diquarks (with Lorentz
indices ρ and λ) according to eq. (2.5), respectively. The
factor mq/fπ comes from quark-pion vertex (3.14) in the
quark-loop (see Appendix A.2), and the nucleon mass was
introduced to isolate a dimensionless constant κ5ax.

The pseudovector current and the axial vector diquark
are also coupled by anomalous terms. As before, we denote
with ρ and λ the Lorentz indices of outgoing and incoming
diquark, respectively, and with µ the pseudovector index.
Out of three possible Lorentz structures for the regular
part of the vertex, pµ

d ερλαβpα
dQ

β , εµρλαQα and εµρλα(pd+
kd)α, in the limit Q → 0 only the last term contributes to
gA. We furthermore verified numerically that the first two
terms yield negligible contributions to the form factor also
for finite Q. Again, the pion pole contributes proportional

2 This can be inferred from parity and covariance.

to Qµ, and our ansatz for the vertex thus reads

Γµρλ,abc
5,ax =

κ5µ,ax

2
εµρλν(pd + kd)ν

1
2
(1− 2δa2)iεabc

+
Qµ

Q2
fπΓ

ρλ,abc
5,ax . (3.23)

For both strengths we roughly obtain κ5ax � κ5µ,ax � 4.5
slightly dependent on the parameter set, see table 7 (in
Appendix A.2).

Scalar-to-axial vector transitions are also possible by
the pion and the pseudovector current. An effective vertex
for the pion-mediated transition has one free Lorentz in-
dex to be contracted with the axial vector diquark. There-
fore, two types of structures exist, one with the pion mo-
mentum Q, and the other with any combination of the
diquark momenta pd and kd. If we considered this tran-
sition as being described by an interaction Lagrangian of
scalar, axial vector and pseudoscalar fields, terms of the
latter structure would be proportional to the divergence
of the axial vector field which is a constraint that could
be set to zero. We therefore adopt the following form for
the transition vertex:

Γ ρ,ab
5,sa = −iκ5sa

mq
fπ

Qρ (2δa2 − 1)δab. (3.24)

The flavor and Dirac indices of the axial vector diquark are
b and ρ. This vertex corresponds to a derivative coupling
of the pion to scalar and axial vector diquark.

The pseudovector-induced transition vertex has two
Lorentz indices, denoted by µ for the pseudovector cur-
rent and ρ for the axial vector diquark. From the mo-
mentum transfer Qµ and one of the diquark momenta,
altogether five independent tensors can be constructed:
δµρ, QµQρ, Qµpρ

d, pµ
dQ

ρ and pµ
dp

ρ
d (the totally antisym-

metric tensor has the wrong parity). We assume as before,
that all terms proportional to Qµ are contained in the pion
part (and do not contribute to gA). From the diquark loop
calculation in Appendix A.2 we find that the terms pro-
portional to pµ

dQ
ρ and pµ

dp
ρ
d can again be neglected with

an error on the level of one per cent. Therefore, we use a
vertex of the form,

Γµρ,ab
5,sa = iMnκ

5
µ,sa δ

µρ 1
2
(2δa2 − 1)δab +

Qµ

Q2
fπΓ

ρ,ab
5,sa .

(3.25)

For the strengths of these two transition vertices we obtain
κ5sa � 3.9 and (on average) κ5µ,sa � 2.1, see table 7 in
Appendix A.2.

We conclude this section with the observation that
eq. (3.21) remains valid with all contributions from quarks
and diquarks included in the pseudoscalar density (3.12)
and the pseudovector current (3.15) of the nucleon. The
extension of this statement to include the diquark cou-
plings follows from the fact that their vertices for the pseu-
dovector current, eqs. (3.23) and (3.25), contain the pion
pole in the form entailed by their Ward identities. Equa-
tion (3.21) is then obtained straightforwardly by inserting
gπNN from eq. (3.13) term by term into the corresponding
equation (3.18) for gP and expanding to leading order in
Q2.



M. Oettel et al.: Nucleon properties in the covariant quark-diquark model 561

0 0.2 0.4 0.6 0.8 1 1.2

Q2 [ GeV 2 ]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
GE - Neutron

Platchkov et al., NPA  510 (1990), 740 [21]
Passchier et al., PRL 82 (1999), 4988 [22]
Ostrick et al., PRL 83 (1999), 276 [23]
Set I
Set II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Q2 [ GeV 2 ]

0

0.2

0.4

0.6

0.8

1
GE - Proton

Hoehler et al., NPB 114 (1976), 505 [20]
Set I
Set II

Fig. 4. Electric form factors of both nucleons for the param-
eter sets of table 1. Experimental data for the proton is taken
from [20]. The older neutron data analysis [21] contains more
systematic uncertainties (due to specific nucleon-nucleon po-
tentials) than the more recent data from [22,23].

4 Results

4.1 Electromagnetic form factors

The results for the electric form factors are shown in fig. 4.
The phenomenological dipole behavior of the proton GE
is well reproduced by both parameter sets. The electric
radius (see table 2) is predominantly sensitive to the width
of the BS wave function. This is different for the neutron.
Here, stronger axial vector correlations tend to suppress
the electric form factor as compared to the calculation
of ref. [9] where only scalar diquarks were maintained. A
smaller binding energy compensates this effect, so that the
results for GE are basically the same for both parameter
sets, see fig. 4.

For the magnetic moments summarized in table 3
two parameters are important. First, in contrast to non-
relativistic constituent models, the dependence of the pro-
ton magnetic moment on the ratio Mn/mq is stronger
than linear. As a result, the quark impulse contribution
to µp with the scalar diquark being spectator, which is
the dominant one, yields about the same for both sets,
even though the corresponding nucleon amplitudes of Set
I contribute about 25% less to the norm than those of
Set II. Secondly, the scalar-axial vector transitions con-
tribute equally strong (Set I) or stronger (Set II) than
the spin flip of the axial vector diquark itself. While for
Set II (with weaker axial vector diquark correlations) the
magnetic moments are about 30% too small, the stronger
diquark correlations of Set I yield an isovector contribu-
tion which is only 15% below and an isoscalar magnetic
moment slightly above the phenomenological value.

Stronger axial vector diquark correlations are favorable
for larger values of the magnetic moments as expected. If
the isoscalar magnetic moment is taken as an indication
that those of Set I are somewhat too strong, however, a
certain mismatch with the isovector contribution remains,
also with axial vector diquarks included.

Recent data from ref. [24] for the ratio µpGE/GM is
compared to our results in fig. 5. The ratio obtained from
Set II with weak axial vector correlations lies above the
experimental data, and that for Set I below. The experi-
mental observation that this ratio decreases significantly
with increasing Q2 (about 40% from Q2 = 0 to 3.5 GeV2),

Table 2. Nucleon electric and magnetic radii for the two pa-
rameter sets compared to the experimental values from [19]
(for (r2

n)el) and [20] (for the remaining radii).

Set I Set II experimental
values

(rp)el [fm] 0.88 0.81 0.836± 0.013
(r2

n)el [fm2] −0.12 −0.10 −0.113± 0.007
(rp)mag [fm] 0.84 0.83 0.843± 0.013
(rn)mag [fm] 0.84 0.83 0.840± 0.042

Table 3. Magnetic moments of proton and neutron. For the
proton we list the following contributions separately: from the
impulse quark-coupling with scalar nucleon amplitudes ’Sc-q’,
from the axial vector diquark ’Ax-dq’, from the scalar-axial
vector transition ’Sc-Ax’, and from the exchange quark ’Ex-q’.
Seagull and scalar diquark contributions are small.

Set I Set II experimental
values

Sc-q 1.35 1.33
Ax-dq 0.44 0.08

µp Sc-Ax 0.43 0.24
Ex-q 0.25 0.22
SUM 2.48 1.92 2.79

µn SUM −1.53 −1.35 −1.91
µp + µn isoscalar 0.95 0.57 0.88
µp − µn isovector 4.01 3.27 4.70
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can be well reproduced with axial vector diquark correla-
tions of a certain strength included. The reason for this is
the following: The impulse approximate photon-diquark
couplings yield contributions that tend to fall off slower
with increasing Q2 than those of the quark. This is the
case for both, the electric and the magnetic form factor. If
no axial vector diquark correlations inside the nucleon are
maintained, however, the only diquark contribution to the
electromagnetic current arises from 〈Jµ

sc〉sc-sc, see eqs. (3.9,
3.10). Although this term does provide for a substantial
contribution to GE, its respective contribution to GM is
of the order of 10−3. This reflects the fact that an on-shell
scalar diquark would have no magnetic moment at all, and
the small contribution to GM may be interpreted as an off-
shell effect. Consequently, too large a ratio µpGE/GM re-
sults, if only scalar diquarks are maintained [9]. For Set II
(with weak axial vector correlations), this effect is still visi-
ble, although the scalar-to-axial vector transitions already
bend the ratio towards lower values at larger Q2. These
transitions almost exclusively contribute to GM, and it
thus follows that the stronger axial vector correlations of
Set I enhance this effect. Just as for the isoscalar mag-
netic moment, the axial vector diquark correlations of Set
I tend to be somewhat too strong here again, however. To
summarize, the ratio µpGE/GM imposes an upper limit
on the relative importance of the axial vector correlations
of estimated 30% (to the BS norm of the nucleons). This
finding will be confirmed once more in our analysis of the
pion-nucleon and the axial coupling constant below.

4.2 gπNN and gA

Examining gπNN(0) which is assumed to be close to the
physical pion-nucleon coupling at Q2 = −m2π (within 10%
by PCAC), and the axial coupling constant gA(0), we find
large contributions to both of these arising from the scalar-
axial vector transitions, see table 4. As mentioned in the
previous section, the various diquark contributions violate
the Goldberger-Treiman relation. Some compensations oc-
cur between the small contributions from the axial vec-
tor diquark impulse-coupling and the comparatively large

Table 4. Various contributions to gπNN(0) and gA(0), labelled
as in table 3 (with ’Ax-q’ for the impulse quark-coupling with
axial vector amplitudes).

Set I Set II
gπNN(0) gA(0) gπNN(0) gA(0)

Sc-q 7.96 0.76 9.25 0.86
Ax-q 0.50 0.04 0.10 0.01
Ax-dq 1.44 0.18 0.34 0.04
Sc-Ax 5.66 0.39 3.79 0.22
Ex-q 1.69 0.12 2.70 0.22
SUM 17.25 1.49 16.18 1.35
expt. gπNN : 13.14± 0.07 [25] ga : 1.267± 0.0035 [27]

13.38± 0.12 [26]

Table 5. Strong radius rπNN and weak radius rA, the experi-
mental value of the latter is taken from [28].

Set I Set II experimental
values

rπNN [fm] 0.83 0.81
rA [fm] 0.82 0.81 0.70±0.09
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Fig. 5. The ratio (µp GE)/GM compared to the data from ref.
[24].

ones from scalar-axial vector transitions which provide for
the dominant effect to yield gA(0) > 1.

Summing all these contributions, the Goldberger-
Treiman discrepancy,

∆GT ≡ gπNN(0)
gA(0)

fπ

Mn
− 1 (4.1)

amounts to 0.14 for Set I and 0.18 for Set II. The larger dis-
crepancy for Set II (with weaker axial vector correlations)
is due to the larger violation of the Goldberger-Treiman
relation from the exchange quark contribution in this case.
This contribution is dominated by the scalar amplitudes,
and its Goldberger-Treiman violation should therefore be
compensated by appropriate chiral seagulls. These dis-
crepancies, and the overestimate of the pion-nucleon cou-
pling, indicate that axial vector diquarks inside nucleons
are likely to represent quite subdominant correlations.

The strong and weak radii are presented in table 5 and
the corresponding form factors in fig. 6. The axial form
factor is experimentally known much less precisely than
the electromagnetic form factors. In the bottom panel of
fig. 6 the experimental situation is summarized by a band
of dipole parameterizations of gA that are consistent with
a wide-band neutrino experiment [28]. Besides the slightly
too large values obtained for Q2 → 0 which are likely to
be due to the PCAC violations of axial vector diquarks as
discussed in the previous section (and which are thus less
significant for the weaker axial vector correlations of Set
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Fig. 6. The pion-nucleon form factor gπNN(Q
2) and the ax-

ial form factor gA(Q
2). ‘Diquark diagrams’ labels the sum of

the impulse approximate axial vector contributions and scalar-
axial vector transitions. The shaded region in the bottom panel
represents the uncertainty in gA as determined from quasi-
elastic neutrino scattering when a dipole form is fitted to both,
the vector and the axial form factor [28].

II), our results yield quite compelling agreement with the
experimental bounds.

5 Summary and conclusions

The description of baryons as fully relativistic bound
states of quark and glue reduces to an effective Bethe-
Salpeter (BS) equation with quark-exchange interaction
when irreducible 3-quark interactions are neglected and
separable 2-quark (diquark) correlations are assumed. By
including axial vector diquark correlations with non-trivial
quark substructure, we solved the BS equations of this

covariant quark-diquark model for nucleons and the ∆-
resonance. While the ∆ cannot be described without ax-
ial vector diquarks, the nucleon-∆ mass splitting imposes
an upper bound on their relative importance inside nu-
cleons, as compared to the scalar diquark correlations. At
present, this bound seems somewhat too strong for a si-
multaneous description of octet and decuplet baryons in
a fully satisfactory manner.

We furthermore extended previous studies of nucleon
properties within the covariant quark-diquark model. In
this way we assess the influence of the axial vector di-
quark correlations with non-trivial quark substructure.
Electromagnetic form factors, the weak form factor gA
and the strong form factor gπNN have been computed.
Structures and strengths of the otherwise unknown axial
vector diquark couplings, and of scalar-axial vector transi-
tions, have thereby been obtained by resolving the quark-
loop substructure of the diquarks at vanishing momentum
transfer (Q2 → 0).

An excellent description is obtained for the electric
form factors of both nucleons. The ratio of the proton elec-
tric and magnetic moment, µpGE/GM as recently mea-
sured at TJNAF [24], is well described with axial vec-
tor diquark correlations of moderate strength. Our results
clearly indicate that axial vector diquarks are necessary
to reproduce the qualitative behavior of the experimen-
tal data for this ratio. At the same time, an upper bound
on the relative importance of axial vector diquarks and
scalar-axial vector transitions (together of estimated 30%
to the BS norm of the nucleons) can be inferred.

For axial vector correlations of such a strength, the
phenomenological value for the isoscalar magnetic mo-
ment of the nucleons is well reproduced. The isovector
contribution results around 15% too small. While the axial
vector diquarks lead to a considerable improvement, both
magnetic moments tend to be around 50% too small with
scalar diquarks alone [9], this remaining 15% mismatch in
the isovector magnetic moment seems to be due to other
effects. One possibility might be provided by vector di-
quarks. While their contributions to the binding energy
of the nucleons are expected to be negligible, the photon
couplings with vector diquarks could be strong enough to
compensate this and thus lead to sizeable effects, in par-
ticular, in the magnetic moments.

For the pion-nucleon and the axial coupling con-
stant, we found moderate violations of PCAC and the
Goldberger-Treiman relation. For scalar diquarks alone,
this is attributed to some violations of the (partial) con-
servation of the simplified axial current neglecting chi-
ral seagulls. Maintaining axial vector diquarks, additional
PCAC violations can arise from missing vector diquarks
which mix with the axial vectors under chiral transfor-
mations as pointed out in ref. [11]. This explains why
the weaker axial vector correlations lead to better val-
ues for gA(0) and gπNN(0). Nevertheless, these violations
are reasonably small and occur only at small momentum
transfers Q2. The axial form factor gA(Q2) is otherwise
in good agreement with the experimental bounds from
quasi-elastic neutrino scattering in [28].
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It should be noted that qualitatively the scalar-axial
vector transitions are of particular importance to obtain
values for gA > 1. These transitions thus solve a prob-
lem that previous applications of the covariant quark-
diquark model shared with many chiral nucleon models.
Their quantitative effect is somewhat too large, as dis-
cussed above.

The conclusions from our present study can be sum-
marized as follows: While selected observables, sensitive
to axial vector diquark correlations, can be improved con-
siderably by their inclusion, other observables (and the
nucleon-∆ mass splitting) provide upper bounds on their
relative importance as compared to scalar diquarks. These
bounds confirm that scalar diquarks provide for the dy-
namically dominant 2-quark correlations inside nucleons.
Deviations of the order of 15% remain in the isovector part
of the magnetic moment (too small), in gA(0) (too large)
and in the Goldberger-Treiman relation. While these can-
not be fully accounted for by including the axial vector
diquark correlations, overall, however, the quark-diquark
model was demonstrated to describe nucleon properties
quite successfully.
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Appendix A. Resolving diquarks

Appendix A.1. Electromagnetic vertices

Here we adopt an impulse approximation to couple the
photon directly to the quarks inside the diquarks obtain-
ing the scalar, axial vector and the photon-induced scalar-
axial vector diquark transition couplings as represented by
the 3 diagrams in fig. 2. For on-shell diquarks these yield
diquark form factors and, under some mild assumptions
on the quark-quark interaction kernel [9], current conser-
vation followed for amplitudes which solve a diquark BS
equation. Due to the quark-exchange antisymmetry of the
diquark amplitudes it suffices to calculate one diagram for
each of the three contributions, i.e., those of fig. 2 in which
the photon couples to the “upper” quark line. The color
trace yields one as in the normalization integrals, eqs. (2.7)
and (2.8). The traces over the diquark flavor matrices with
the charge matrix will be included implicitly in those over
the Dirac structures in the resolved vertices which read

(with the minus sign for fermion loops),

Γ̃µ
sc = −Tr

∫
d4q
(2π)4

χ̄
(

p2−p3

2

)
S(p2)(−iγµ)S(p1)

×χ
(

p1−p3

2

)
ST (p3) , (A.1)

Γ̃µ,αβ
ax = −Tr

∫
d4q
(2π)4

χ̄α
(

p2−p3

2

)
S(p2)(−iγµ)S(p1)

×χβ
(

p1−p3

2

)
ST (p3) , (A.2)

Γ̃µ,βsa = −Tr
∫

d4q
(2π)4

χ̄
(

p2−p3

2

)
S(p2)(−iγµ)S(p1)

×χβ
(

p1−p3

2

)
ST (p3) (A.3)

= 2imqεµβρλ(pd + kd)ρQλ (A.4)

×
∫

d4q
(2π)4

gsga P (q −Q/4)P (q +Q/4)
(p21 +m2q)(p22 +m2q)(p23 +m2q)

.

The quark momenta herein are,

p1 =
pd + kd
4

− Q

2
+ q , p2 =

pd + kd
4

+
Q

2
+ q ,

p3 =
pd + kd
4

− q . (A.5)

Even though current conservation can be maintained with
these vertices on-shell, off-shell Γ̃µ

sc and Γ̃µ,αβ
ax do not sat-

isfy the Ward-Takahashi identities for the free propagators
in eqs. (2.2, 2.3). They can thus not directly be employed
to couple the photon to the diquarks inside the nucleon
without violating gauge invariance. For Q = 0, however,
they can be used to estimate the anomalous magnetic mo-
ment κ of the axial vector diquark and the strength of the
scalar-axial vector transition, denoted by κsa in (3.7), as
follows:

First we calculate the contributions of the scalar and
axial vector diquark to the proton charge, i.e. the sec-
ond diagram in fig. 1 to GE(0), with replacing the vertices
Γµ
sc and Γµ,αβ

ax given in eqs. (3.5) and (3.6) by the resolved
ones, Γ̃µ

sc and Γ̃µ,αβ
ax in eqs. (A.1) and (A.2). Since the bare

vertices, on the other hand, satisfy the Ward-Takahashi
identities, and since current conservation is maintained in
the calculation of the electromagnetic form factors, the
correct charges of both nucleons are guaranteed to result
from the contributions to GE(0) obtained with these bare
vertices, Γµ

sc and Γµ,αβ
ax of eqs. (3.5) and (3.6). In order

to reproduce the these correct contributions, we then ad-
just the values for the diquark couplings, gs and ga, to be
used in connection with the resolved vertices of eqs. (A.1)
and (A.2). This yields couplings grescs and gresca , slightly
rescaled (by a factor of the order of one, see table 6).
Once these are fixed we can continue and calculate the
contributions to the magnetic moment of the proton that
arise from the resolved axial vector and transition cou-
plings, Γ̃µ,αβ

ax and Γ̃µ,β
sa , respectively. These contributions

determine the values of the constants κ and κsa for the
couplings in eqs. (3.6) and (3.7), (3.8).

The results are given in table 6. As can be seen, the
values obtained for κ and κsa by this procedure are insen-
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Table 6. Rescaled diquark normalizations and constants of
photon-diquark couplings.

gresc
s /gs gresc

a /ga κ κsa

Set I 0.943 1.421 1.01 2.09
Set II 0.907 3.342 1.04 2.14

sitive to the parameter sets for the nucleon amplitudes.
In the calculations of observables we use κ = 1.0 and
κsa = 2.1.

Appendix A.2. Pseudoscalar and pseudovector vertices

The pion and the pseudovector current do not couple to
the scalar diquark. Therefore, in both cases only those
two contributions have to be computed which are obtained
from the middle and lower diagrams in fig. 2 with replacing
the photon-quark vertex by the pion-quark vertex of eq.
(3.14), and by the pseudovector-quark vertex of eq. (3.20),
respectively. For Dirac part of the vertex describing the
pion coupling to the axial vector diquark this yields,

Γ̃ ρλ
5,ax = − 2

m2q
fπ

ερλµν(pd + kd)µQν (A.6)

×
∫

d4q
(2π)4

(gresca )2 P (q −Q/4)P (q +Q/4)
(p21 +m2q)(p22 +m2q)(p23 +m2q)

,

and fixes its strength (at Q2 = 0) to κ5ax ≈ 4.5, see table 7.
For the effective pseudovector-axial vector diquark ver-

tex in eq. (3.23) it is sufficient to consider the regular
part, since its pion pole contribution is fully determined
by eq. (A.6) already. The regular part reads,

Γ̃µρλ
5,ax =

∫
d4q
(2π)4

(gresca )2 P (q −Q/4)P (q +Q/4)
(p21 +m2q)(p22 +m2q)(p23 +m2q)

(A.7)

× [−4m2qεµρλν (p1 + p2 + p3)ν − Trγ5γρp/ 2γ
µp/ 1γ

λp/ 3
]
.

Although after the q-integration, the terms in brackets
yield the four independent Lorentz structures discussed in
the paragraph above eq. (3.23), only the first term con-
tributes to gA(0) (with p1+ p2+ p3 = (3/4)(pd+ kd)+ q).

The scalar-axial vector transition induced by the pion
is described by the vertex

Γ̃ ρ
5,sa = 4i

mq
fπ

∫
d4q
(2π)4

grescs gresca P (q −Q/4)P (q +Q/4)

× (p2p3)p
ρ
1 − (p3p1)pρ

2 + (p1p2)p
ρ
3

(p21 +m2q)(p22 +m2q)(p23 +m2q)
, (A.8)

and the reverse (axial vector-scalar) transition is obtained
by substituting Q → −Q (or p1 ↔ p2) in (A.8). The
corresponding vertex for the pseudovector current reads

Γ̃µρ
5,sa = −4imq

∫
d4q
(2π)4

grescs gresca P (q −Q/4)P (q +Q/4)
(p21 +m2q)(p22 +m2q)(p23 +m2q)

× [
δµρ(m2q − p1p2 − p2p3 − p3p1) (A.9)

+ {p1p2}µρ
+ + {p1p3}µρ

+ − {p2p3}µρ
−

]
.

Table 7. Strengths for pion- and pseudovector-diquark cou-
plings.

κ5
ax κ5

µ,ax κ5
sa κ5

µ,sa

Set I 4.53 4.41 3.97 1.97
Set II 4.55 4.47 3.84 2.13

The short-hand notation for a(n) (anti)symmetric prod-
uct used herein is defined as {p1p2}µν

± = pµ
1p

ν
2±pν

1p
µ
2 . The

reverse transition is obtained from Q → −Q together with
an overall sign change in (A.9). As already mentioned in
the main text, the term proportional to δµν provides 99
per cent of the value for gA as obtained with the full ver-
tex. It therefore clearly represents the dominant tensor
structure.

As explained for the electromagnetic couplings of di-
quarks, we use these resolved vertices in connection with
the rescaled couplings grescs and gresca to compute gπNN

and gA in the limit Q → 0. In this way the otherwise un-
known constants that occur in the (pointlike) vertices of
eqs. (3.22–3.25) are determined.

As seen from the results in table 7, the values obtained
for these effective coupling constants are only slightly de-
pendent on the parameter set (the only exception being
κ5µ,sa where the two values differ by 8%). For the form fac-
tor calculations presented in Sec. 3.1 we employ κ5ax = 4.5,
κ5µ,ax = 4.4, κ

5
sa = 3.9 and κ5µ,sa = 2.1.
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